Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Acta Pharm Sin B ; 2023 May 26.
Article in English | MEDLINE | ID: covidwho-2328021

ABSTRACT

The continuously emerging SARS-CoV-2 variants pose a great challenge to the efficacy of current drugs, this necessitates the development of broad-spectrum antiviral drugs. In the previous study, we designed a recombinant protein, heptad repeat (HR) 121, as a variant-proof vaccine. Here, we found it can act as a fusion inhibitor and demonstrated broadly neutralizing activities against SARS-CoV-2 and its main variants. Structure analysis suggested that HR121 targets the HR2 domain in SARS-CoV-2 spike (S) 2 subunit to block virus-cell fusion. Functional experiments demonstrated that HR121 can bind HR2 at serological-pH and endosomal-pH, highlighting its inhibition capacity when SARS-CoV-2 enters via either cellular membrane fusion or endosomal route. Importantly, HR121 can effectively inhibit SARS-CoV-2 and Omicron variant pseudoviruses entering the cells, as well as block authentic SARS-CoV-2 and Omicron BA.2 replications in human pulmonary alveolar epithelial cells. After intranasal administration to Syrian golden hamsters, it can protect hamsters from SARS-CoV-2 and Omicron BA.2 infection. Together, our results suggest that HR121 is a potent drug candidate with broadly neutralizing activities against SARS-CoV-2 and its variants.

2.
Adv Healthc Mater ; : e2300673, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2320621

ABSTRACT

The viral spike (S) protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells, facilitating its entry and infection. Here, functionalized nanofibers targeting the S protein with peptide sequences of IRQFFKK, WVHFYHK and NSGGSVH, which are screened from a high-throughput one-bead one-compound screening strategy, are designed and prepared. The flexible nanofibers support multiple binding sites and efficiently entangle SARS-CoV-2, forming a nanofibrous network that blocks the interaction between the S protein of SARS-CoV-2 and the ACE2 on host cells, and efficiently reduce the invasiveness of SARS-CoV-2. In summary, nanofibers entangling represents a smart nanomedicine for the prevention of SARS-CoV-2.

3.
Antib Ther ; 6(2): 97-107, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2306035

ABSTRACT

BACKGROUND: Ending the global COVID-19 pandemic requires efficacious therapies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nevertheless, the emerging Omicron sublineages largely escaped the neutralization of current authorized monoclonal antibody therapies. Here we report a tetravalent bispecific antibody ISH0339, as a potential candidate for long-term and broad protection against COVID-19. METHODS: We report here the making of ISH0339, a novel tetravalent bispecific antibody composed of a pair of non-competing neutralizing antibodies that binds specifically to two different neutralizing epitopes of SARS-CoV-2 receptor-binding domain (RBD) and contains an engineered Fc region for prolonged antibody half-life. We describe the preclinical characterization of ISH0339 and discuss its potential as a novel agent for both prophylactic and therapeutic purposes against SARS-CoV-2 infection. RESULTS: ISH0339 bound to SARS-CoV-2 RBD specifically with high affinity and potently blocked the binding of RBD to the host receptor hACE2. ISH0339 demonstrated greater binding, blocking and neutralizing efficiency than its parental monoclonal antibodies, and retained neutralizing ability to all tested SARS-CoV-2 variants of concern. Single dosing of ISH0339 showed potent neutralizing activity for treatment via intravenous injection and for prophylaxis via nasal spray. Preclinical studies following single dosing of ISH0339 showed favorable pharmacokinetics and well-tolerated toxicology profile. CONCLUSION: ISH0339 has demonstrated a favorable safety profile and potent anti-SARS-CoV-2 activities against all current variants of concern. Furthermore, prophylactic and therapeutic application of ISH0339 significantly reduced the viral titer in lungs. Investigational New Drug studies to evaluate the safety, tolerability and preliminary efficacy of ISH0339 for both prophylactic and therapeutic purposes against SARS-CoV-2 infection have been filed.

4.
Signal Transduct Target Ther ; 8(1): 169, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2305969

ABSTRACT

Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 µM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 µM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.


Subject(s)
COVID-19 , HIV Infections , Pregnancy , Animals , Female , Humans , SARS-CoV-2 , Nelfinavir/pharmacology , Macaca mulatta , Prospective Studies , China , Antiviral Agents/pharmacology
5.
Talanta ; 258: 124462, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2276105

ABSTRACT

More than forty antigen testing kits have been approved to response the prevalence of SARS-CoV-2 and its variant strains. However, the approved antigen testing kits are not capable of quantitative detection. Here, we successfully developed a lateral flow immunoassay based on colloidal gold nanoparticles (CGNP-based LFIA) for nucleocapsid (N) protein of SARS-CoV-2 quantitative detection. Delta strain (NMDC60042793) of SARS-CoV-2 have been cultured and analyzed by our developed digital PCR and LFIA methods to explore the relationship between N protein amount and N gene level. It indicated that the linear relationship (y = 47 ×) between N protein molecule number and N gene copy number exhibited very well (R2 = 0.995), the virus titers and N protein amount can be roughly estimated according to nucleic acid testing. Additionally, detection limits (LODs) of nine approved antigen testing kits also have been evaluated according to the Guidelines for the registration review of 2019-nCoV antigen testing reagents. Only three antigen testing kits had LODs as stated in the instructions, the LODs of Kits have been converted into the N gene and N protein levels, according to the established relationships among virus titer vers. N gene and antigen. Results demonstrated that the sensitivity of nucleic acid testing is at least 1835 times higher than that of antigen testing. We expect that the relationship investigation and testing kits evaluation have the important directive significance to precise epidemic prevention.


Subject(s)
COVID-19 , Metal Nanoparticles , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Gold , Nucleocapsid Proteins/genetics , Sensitivity and Specificity
6.
Virol Sin ; 2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2258965

ABSTRACT

The continuously arising of SARS-CoV-2 variants has been posting a great threat to public health safety globally, from B.1.17 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) to B.1.1.529 (Omicron). The emerging or re-emerging of the SARS-CoV-2 variants of concern is calling for the constant monitoring of their epidemics, pathogenicity and immune escape. In this study, we aimed to characterize replication and pathogenicity of the Alpha and Delta variant strains isolated from patients infected in Laos. The amino acid mutations within the spike fragment of the isolates were determined via sequencing. The more efficient replication of the Alpha and Delta isolates was documented than the prototyped SARS-CoV-2 in Calu-3 and Caco-2 â€‹cells, while such features were not observed in Huh-7, Vero E6 and HPA-3 â€‹cells. We utilized both animal models of human ACE2 (hACE2) transgenic mice and hamsters to evaluate the pathogenesis of the isolates. The Alpha and Delta can replicate well in multiple organs and cause moderate to severe lung pathology in these animals. In conclusion, the spike protein of the isolated Alpha and Delta variant strains was characterized, and the replication and pathogenicity of the strains in the cells and animal models were also evaluated.

7.
Cell Res ; 32(12): 1068-1085, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2117525

ABSTRACT

The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Mice , Humans , Rabbits , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Mice, Transgenic , Antibodies, Viral
10.
Adv Physiol Educ ; 46(2): 319-324, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1770006

ABSTRACT

Due to the COVID-19 pandemic during spring semester 2020, teachers and students were forced to engage in online instruction. However, there is little evidence on the feasibility of online physiology teaching. This study demonstrated a 3-wk preliminary online physiology course based on Rain Classroom assisted by the mobile application WeChat. Eighty-seven nursing undergraduate students attended an online physiology course during the spring semester of the 2019-2020 academic year from March 9 to March 29. We determined the effects of the online physiology learning based on in-class tests, preclass preparation, and review rates for the course materials. We also measured the students' perceptions and attitudes about online learning with a questionnaire survey. Posttest scores from the first week to the third week in online physiology course (7.22 ± 1.83, 7.68 ± 2.09, and 6.21 ± 2.92, respectively) exceeded the pretest scores (5.32 ± 2.14, 6.26 ± 2.49, and 3.72 ± 2.22, respectively), and this finding was statistically significant (all P < 0.001). Moreover, the pretest scores were significant positive predictors of final grade (all P < 0.01). In addition, the percentage of preclass preparation increased in 3 wk, from 43.68% to 57.47% to 68.97%. From the first week to the third week, the review rate increased from 86.21% to 91.95%; however, the second week was the lowest of all (72.41%). Finally, students' perceptions about their online physiology learning experiences were favorable. In conclusion, online physiology instruction based on Rain Classroom assisted by WeChat was an effective strategy during the COVID-19 pandemic.


Subject(s)
COVID-19 , Education, Distance , Humans , Pandemics , Students
11.
Information Sciences ; 2022.
Article in English | ScienceDirect | ID: covidwho-1689232

ABSTRACT

Negative emotional contagion along with sentiment mutation through information propagation on social media is critical for mitigating disinformation and directing public opinion for compliance with key public interventions, such as vaccine uptake during a pandemic. Here, we develop a dynamic multiple negative emotional susceptible-forwarding-immune (MNE-SFI) model to examine how negative emotion spreads on social media and how sentiment mutation impacts by fitting the model to real multiple temporal information in messages with sentiments obtained from the Chinese Sina microblog. Emotional choices, meaning that individuals attempting to spread information are not only influenced by the objective emotions embedded in the influential information spread by influencers but also by subjective emotional tendencies, is an essential human behavior for information propagation. Hence, we seek to link the negative emotional contagion in the network at the macroscopic level to the emotional choices of individuals, and model parameters are used at the microcosmic level to measure the “copying” and “mutation” probabilities of negative sentiments in an event. Our results illustrate the emotional choices of users play essential roles in methods for mitigating harmful emotion spread and promoting meaningful emotion diffusion.

12.
EBioMedicine ; 75: 103803, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587923

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic has been a great threat to global public health since 2020. Although the advance on vaccine development has been largely achieved, a strategy to alleviate immune overactivation in severe COVID-19 patients is still needed. The NLRP3 inflammasome is activated upon SARS-CoV-2 infection and associated with COVID-19 severity. However, the processes by which the NLRP3 inflammasome is involved in COVID-19 disease remain unclear. METHODS: We infected THP-1 derived macrophages, NLRP3 knockout mice, and human ACE2 transgenic mice with live SARS-CoV-2 in Biosafety Level 3 (BSL-3) laboratory. We performed quantitative real-time PCR for targeted viral or host genes from SARS-CoV-2 infected mouse tissues, conducted histological or immunofluorescence analysis in SARS-CoV-2 infected mouse tissues. We also injected intranasally AAV-hACE2 or intraperitoneally NLRP3 inflammasome inhibitor MCC950 before SARS-CoV-2 infection in mice as indicated. FINDINGS: We have provided multiple lines of evidence that the NLRP3 inflammasome plays an important role in the host immune response to SARS-CoV-2 invasion of the lungs. Inhibition of the NLRP3 inflammasome attenuated the release of COVID-19 related pro-inflammatory cytokines in cell cultures and mice. The severe pathology induced by SARS-CoV-2 in lung tissues was reduced in Nlrp3-/- mice compared to wild-type C57BL/6 mice. Finally, specific inhibition of the NLRP3 inflammasome by MCC950 alleviated excessive lung inflammation and thus COVID-19 like pathology in human ACE2 transgenic mice. INTERPRETATION: Inflammatory activation induced by SARS-CoV-2 is an important stimulator of COVID-19 related immunopathology. Targeting the NLRP3 inflammasome is a promising immune intervention against severe COVID-19 disease. FUNDING: This work was supported by grants from the Bureau of Frontier Sciences and Education, CAS (grant no. QYZDJ-SSW-SMC005 to Y.G.Y.), the key project of the CAS "Light of West China" Program (to D.Y.) and Yunnan Province (202001AS070023 to D.Y.).


Subject(s)
COVID-19 , Lung , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Disease Models, Animal , Humans , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/immunology , Macrophages/pathology , Macrophages/virology , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2/genetics , THP-1 Cells
13.
Mol Biomed ; 2(1): 29, 2021.
Article in English | MEDLINE | ID: covidwho-1515465

ABSTRACT

In the face of the emerging variants of SARS-CoV-2, there is an urgent need to develop a vaccine that can induce fast, effective, long-lasting and broad protective immunity against SARS-CoV-2. Here, we developed a trimeric SARS-CoV-2 S protein vaccine candidate adjuvanted by PIKA, which can induce robust cellular and humoral immune responses. The results showed a high level of neutralizing antibodies induced by the vaccine was maintained for at least 400 days. In the study of non-human primates, PIKA adjuvanted S-trimer induced high SARS-CoV-2 neutralization titers and protected from virus replication in the lung following SARS-CoV-2 challenge. In addition, the long-term neutralizing antibody response induced by S-trimer vaccine adjuvanted by PIKA could neutralize multiple SARS-CoV-2 variants and there is no obvious different among the SARS- CoV-2 variants of interest or concern, including B.1.351, B.1.1.7, P.1, B.1.617.1 and B.1.617.2 variants. These data support the utility of S-trimer protein adjuvanted by PIKA as a potential vaccine candidate against SARS-CoV-2 infection. Supplementary Information: The online version contains supplementary material available at 10.1186/s43556-021-00054-z.

15.
Cell Rep Med ; 2(11): 100448, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1492754

ABSTRACT

Activation of nucleic acid sensing Toll-like receptors (TLRs) in B cells is involved in antiviral responses by promoting B cell activation and germinal center responses. In order to take advantage of this natural pathway for vaccine development, synthetic pathogen-like antigens (PLAs) constructed of multivalent antigens with encapsulated TLR ligands can be used to activate B cell antigen receptors and TLRs in a synergistic manner. Here we report a PLA-based coronavirus disease 2019 (COVID-19) vaccine candidate designed by combining a phage-derived virus-like particle carrying bacterial RNA as TLR ligands with the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein as the target antigen. This PLA-based vaccine candidate induces robust neutralizing antibodies in both mice and non-human primates (NHPs). Using a NHP infection model, we demonstrate that the viral clearance is accelerated in vaccinated animals. In addition, the PLA-based vaccine induces a T helper 1 (Th1)-oriented response and a durable memory, supporting its potential for further clinical development.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , B-Lymphocytes/immunology , COVID-19 Vaccines/pharmacology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cell Line , Female , Lymphocyte Activation , Macaca mulatta/immunology , Male , Mice , SARS-CoV-2/metabolism
17.
Signal Transduct Target Ther ; 6(1): 328, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1392810

ABSTRACT

Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cellular Microenvironment/immunology , Lung/immunology , Receptors, CXCR3/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Disease Models, Animal , Inflammation/immunology , Inflammation/pathology , Interferon-alpha/immunology , Interleukin-6/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Male
18.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1387284

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence , COVID-19 Drug Treatment
20.
Cell Res ; 31(9): 1011-1023, 2021 09.
Article in English | MEDLINE | ID: covidwho-1315592

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global crisis, urgently necessitating the development of safe, efficacious, convenient-to-store, and low-cost vaccine options. A major challenge is that the receptor-binding domain (RBD)-only vaccine fails to trigger long-lasting protective immunity if used alone for vaccination. To enhance antigen processing and cross-presentation in draining lymph nodes (DLNs), we developed an interferon (IFN)-armed RBD dimerized by an immunoglobulin fragment (I-R-F). I-R-F efficiently directs immunity against RBD to DLNs. A low dose of I-R-F induces not only high titers of long-lasting neutralizing antibodies (NAbs) but also more comprehensive T cell responses than RBD. Notably, I-R-F provides comprehensive protection in the form of a one-dose vaccine without an adjuvant. Our study shows that the pan-epitope modified human I-R-F (I-P-R-F) vaccine provides rapid and complete protection throughout the upper and lower respiratory tracts against a high-dose SARS-CoV-2 challenge in rhesus macaques. Based on these promising results, we have initiated a randomized, placebo-controlled, phase I/II trial of the human I-P-R-F vaccine (V-01) in 180 healthy adults, and the vaccine appears safe and elicits strong antiviral immune responses. Due to its potency and safety, this engineered vaccine may become a next-generation vaccine candidate in the global effort to overcome COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine/immunology , Protein Binding/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Cell Line , Chlorocebus aethiops , Double-Blind Method , Female , HEK293 Cells , Humans , Interferons/immunology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Vaccination/methods , Vero Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL